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We show that a Lorentzian hypersurface M” of the Minkowski space tQ:+’ is pseudo- 
isotropic if and only if Mfl is flat and minimal. Next we obtain a classification of all 
pseudo-isotropic Lorentzian hypersurfaces in rW: and R:. 
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1. Introduction 

The notion of pseudo-isotropic (or pseudo-null) submanifolds of semi- 
Riemannian manifolds was introduced by the second named author in the 
early seventies (see, e.g., refs. [2], [3, chs. 5,6,7]). Since then a lot of work 
has been done on this subject by, for instance, L. Vanhecke, B. Rouxel and 
the second and third named author. 

We recall that a manifold is called isotropic (or null) if its metric tensor is 
degenerate. In particular, isotropic submanifolds in space-times play an impor- 
tant role in relativity theory. Related to this notion of isotropy, a Lorentzian 
hypersurface Mn in a Minkowski space [w;“’ is called pseudo-isotropic when 
its Gauss map (or spherical representation-the map which sends a point p of 
M” onto the endpoint of the unit normal vector c(p) at p, translated to the 
origin) is null (or “ametrical”), or when its third fundamental form vanishes. 

In theorem 1, we obtain that M” is pseudo-isotropic if and only if Mn is a 
flat minimal hypersurface in OX, ‘I+’ This result holds for all dimensions n. The . 
“only if’ part already appeared in the literature, see, for instance, refs. [2] and 
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[4], or ref. [ 51 for a generalization to higher codimension. In theorem 2 and 
theorem 3, for the particular cases of dimension n = 2 or n = 3, we obtain 
full classification results of all pseudo-isotropic Lorentzian hypersurfaces in 
[w: and R:. For an introduction to semi-Riemannian geometry, the reader is 
referred to ref. [ 11. 

2. Definitions and statements of results 

Let [WY+’ be the (n + 1 )-dimensional Minkowski space, and let M” be a 
Lorentz hypersurface of [WY+‘, i.e., the induced metric on M” has signature 
(n - 1,l). We denote both the Lorentz metric on lQ;l+’ and the induced 
metric on M” by ( , ), Let V be the Levi-Civita connection of M” and V the 
Levi-Civita connection of R, ‘+I As usual, a vector ZI is called a null-vector . 
if (v,w) = 0. Let S denote the shape operator of M”. Then M” is called 
pseudo-isotropic if (SX,SY) = 0 for all tangent vectors X and Y. In other 
words, M” is pseudo-isotropic if SX is a null-vector for every X. Since S 
is symmetric, this is equivalent to S2 = 0. For hypersurfaces we prove the 
following theorem. 

Theorem 1. A Lorentzian hypersurface M” of R~+’ is pseudo-isotropic if and 
only if M” is flat and minimal. 

For n = 2 we can give a complete classification of pseudo-isotropic hyper- 
surfaces in the following way. 

Theorem 2. A Lorentzian hypersurface M2 of [wf is pseudo-isotropic if and only 
if there is an open dense subset of M2 such that each connected component is 
a part of a null-cylinder on a null-curve. 

A null-curve in I$, or in any Minkowski space R;l, is a curve such that its 
tangent vector is a null-vector at any point. If cy is a curve, and b is a constant 
vector in rW: which is nowhere tangent to (Y, then x(s, t) = a(s) + tb is a 
cylinder on a and it is called a null-cylinder if b is a null-vector. 

Theorem 3. A Lorentzian hypersurface M3 of W: is pseudo-isotropic if and 
only if there is an open dense subset of M3 such that each connected component 
U is a part of (I) the product of a null-cylinder on a null-curve which lies in 
a Lorentzian subspace rWf of rWi and R, the orthogonal complement of Rf, i.e., 
U c M2 x R c rWf x R = II:, or (2) the osculating hypersurface of a null-curve, 
or (3) up to a translation, a cone centered at the origin on the tangential surface 
of a curve on the null-cone. 
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The osculating hypersurface of a curve Q: in rW: is the hypersurface given by 
the parametrization x(s, tl, 12) = a(s) + tla’(s) + t&‘(s), whereby (Y’, o” 
and (Y”’ are assumed to be linearly independent. The tangential surface of a 
curve Q in I$ is the surface given by x (s, t ) = (Y (s) + tcr’ (s). Here (Y’ and u” 
have to be linearly independent. Note that the tangential surface of a curve 
on the null-cone is isotropic and that a cone, say centered at the origin, on a 
surface M2 is a three-dimensional hypersurface only if the position vector is 
never tangent to M2. 

Both in theorem 2 and theorem 3 the expression “open dense subset” 
appears. This comes in because in the proofs, whenever we need the fact that 
some function is not zero, we will always restrict to an open part where this 
function is not zero, and to the interior of the set where this function vanishes. 
Details are left for the reader. 

3. Proof of the theorems 

3.1. PROOF OF THEOREM 1 

If M” is pseudo-isotropic in R;+‘, then SX is a null-vector for all X. Hence 
im (S) is a part of the null-cone of T,M at any point p E M. Since im (S) is 
a linear subspace, it is a line. So rank(S) 5 1, which implies that M” is flat. 

Now fix a point p E M. If S, = 0, then clearly trace(S) = 0. So we can 
assume that S, # 0. Since im(S) is a line, there is a nonzero vector Z and 
a nonzero one-form (Y such that S(X) = a (X)Z for all X. Moreover, Z is a 
null-vector. Since the shape operator is symmetric w.r.t. ( , ), we obtain that 

cw(X) (Z, Y) = Q(Y) (-TX) 

for all X and Y. From this equation it is easy to obtain that ker(S) = 
ker(o) = Z’-, where Zl = {X 1 (X,Z) = 0). 

Now we choose a basis {e, , e2, . . . , e,} of T,M such that (ei, et) = 0, 
(et, e2) = 1, (ez, ez) = 0, e2 = Z, (ei, ei) = (ez, ei) = 0 and (ei, ej) = 6ii for 
i,j > 2. But then we have that S(er) = cy(ei)el and S(ez) = S(es) = ..a = 
S (e, ) = 0. In particular we obtain trace(S) = 0. 

Conversely, if M” is flat and minimal, then rank(S) 5 1 and trace(S) = 0. 
Take a point p E M. If S, = 0, then clearly Si = 0. So we assume that S, # 0. 
So again there is a nonzero vector Z and a nonzero one-form a such that 
S(X) = a(X)Z for all X. Like above, we know that ker(S) = ker(cr) = Zl. 
We have to show that Z is a null-vector, i.e. that Z E Zl. If Z is not a 
null-vector, then Z is an eigenvector of S with nonzero eigenvalue. Since 
zero is an eigenvalue of S with multiplicity n - 1, trace(S) # 0. This is a 
contradiction. 0 
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3.2. PROOF OF THEOREM 2 

Let M* be a pseudo-isotropic surface in RT, immersed by x. By theorem 
1, we know that M* is flat and minimal. So around each point there exist 
coordinates {u, V} such that (x~,, xl,) = (x,, x1,) = 0 and (x,, x,) = 1. Then 
trace(S) = 2(S(xl,),xzr) = 0 and det(S) = -(S(xN),xI,) (S(x,),xV) = 0. 
Hence we can assume that (S (x,, ), x,) = 0. Therefore S (x,, ) = 0. But then 
vjsUxl, = 0 and ?.r,,x,, = 0, so that x1, is a constant null-vector b on M*. Let 
/I be any v-line. Then M* is a null-cylinder on the null-curve /?. 

Conversely, let x (u, 21) = /I (U ) + vb be a null-cylinder on a null-curve j3. 
We can assume that (j?‘(u), b) = 1, by taking another parametrization of j3 if 
necessary. Then (x,, x,) = (x,,x,) = 0 and (x,, x,,) = 1. Since xl,,, = 0, we 
immediately obtain that M* is flat and minimal. 0 

3.3. PROOF OF THEOREM 3 

Let M3 be a pseudo-isotropic surface in ‘WT. By theorem 1, we know that 
M3 is flat and minimal. We assume that S is not zero. Then ker(S,) is a two- 
dimensional linear subspace of the tangent space at any point p. From the proof 
of theorem 1 we also know that im (S) c ker (S). The distribution p t-+ ker(S,, ) 
is known to be totally geodesic, so that each integral manifold is mapped into 
a two-dimensional affine subspace of R;. Now it is clear that we can choose 
a curve CK on M3 and vector fields El and E2 along Q, spanning ker(S) such 
that ((~‘,a’) = (El,El) = (El,E2) = (a’,El) = 0 and (d,E,) = (E2,Ez) = 1. 
Thenx(t,u,v) = a(t)+uEl(t)+vE2(t) parametrizesM3.SincexUl = El(t) 
and S (x,,) = 0, E; is tangent to M3, and the same is true for Ei (t ). Hence 

J% = (%~‘)EI + (E;,Ed& 
E; = (E&E,) a’ + (E;,a’)E,. (1) 

Case I: (E{, El) = 0. In this case, both Ei (t) and E; (1) are proportional to 
El (t). This implies that El (t) always points in a fixed null-direction Fi and 
that there exists a function A such that E2 (t) = A(t)F, + F2, where F2 is a 
constant vector of length 1 and orthogonal to F,. Then y (t, U, u ) = CY (t) + 
uFi+~FzisanewparametrizationofM~.Let /3(t) = a(l)+u(f)F1+v(t)F2 
be a curve on M3. Then 

(P’(t,J’(t,) = 224’(t) (cr’(t),F~) + 27~‘tr) (dO,f’z) + v’(t)*, 
(P’ULF2) = (cW,F2) + v’(t). 

We can choose the functions u and v such that (a’ (t ), F2) + v’ (t ) = 0 and 
224’(t) (a’(t), F,) = (a’(t), F2)*. Then /I is a null-curve, and j?‘(t) is always 
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orthogonal to Fl. So the null-cylinder p(t) + uF, on the null-curve p lies in 
the Lorentzian subspace through j?(O) orthogonal to Fl. This finishes the first 
case. 

Case 2: (Ei,El) # 0. In this case, from (1 ), we can write (Y’ = fiEi +fiE, for 
some functions fi and fi. If we define a curve p on M3 by P(t) = o(t) -f,Ez, 
then 

P’ = -f,% + f2E,. 

Using (1 ), this implies that there exist functions f3 and f4 such that 

P’ = f3EI + f4E1. 

Defining a curve y by y(t) = j?(t) - fJ(t)E,(t), we obtain that y’ is pro- 
portional to El at every point. In particular, y is a null-curve. Furthermore, 
(1) implies that also y” lies in the plane El A E2. If moreover y’ # 0, then 
y’ A y” = El A E2, so we have an osculating hypersurface on a null-curve. 

If y’ = 0, then M3 is a cone, i.e., the plane El A E2 goes through a fixed 
point, say the origin of Ri. Hence M3 can be parametrized by x (t, u, v ) = 
uEl (t ) + wE2 (t ). But from ( 1) and the assumption (Ei , E2) # 0 we see that 
the planes El A E2 and El A Ei coincide. Hence M3 can be parametrized 
by x (t, u, V) = uEl (t) + vE; (t). So M3 is a cone on the surface given by 
El (t ) + vEi (t ). Since El (t ) is a null-vector for each t, this surface is the 
tangential surface of a curve on the null-cone. 

In order to prove the converse it is sufficient to show that the hypersurfaces 
of types (2) and (3) are flat and minimal. 

First let y be a null-curve, such that y’, y” and 7”’ are linearly independent 
at any point. Since (y’, y’) = 0 and (y’, 7”) = 0, we have that (y”, y”) > 0, and 
we can parametrize y such that (y”, y”) = 1. Then (y’, y”‘) = - 1. Consider 
the osculating hypersurface x(t,u,v) = y(t) + uy’(t) + vy”(t). Then clearly 
7”’ is tangent and ker(S) = y’ A y”, so that the hypersurface is flat. In order 
to show that it is minimal, we have to show that Sy”’ lies in y’ A y”, i.e., 
(Sy”‘, y’) = 0. But this follows immediately from the symmetry of S. 

Secondly, let y be a curve on the null-cone, such that y’ and y” are linearly 
independent at any point. As in the first case, we can parametrize y such that 
(r’, y’) = 1. Consider the cone, centered at the origin, on the tangential surface 
of y. So we assume that y, y’ and y” are linearly independent at any point. A 
parametrization can be given by x (t, u, w ) = uy (t) + vy’ (t). As in the first 
case, one then can show that ker(S) = y A y’, so that the hypersurface is flat, 
and that it is minimal. 0 
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